metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[Bis(2-pyridylmethyl)amine]dichloridozinc(II) chloroform solvate

Young-Inn Kim,^a You-Soon Lee,^b Hoe-Joo Seo,^c Jin-Young Lee^a and Sung Kwon Kang^b*

^aDepartment of Chemistry Education and Center for Plastic Information Systems, Pusan National University, Pusan 609-735, Republic of Korea, ^bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and ^cDepartment of Chemistry, Pusan National University, Pusan 609-735, Republic of Korea

Correspondence e-mail: skkang@cnu.ac.kr

Received 11 October 2007; accepted 17 October 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; R factor = 0.046; wR factor = 0.132; data-to-parameter ratio = 23.0.

The Zn atom in the title complex, $[ZnCl_2(C_{12}H_{13}N_3)]$. CHCl₃, adopts a distorted square-pyramidal geometry, being coordinated by three N atoms of the tridentate dipicolylamine ligand and two Cl atoms. Intermolecular N-H···Cl hydrogen-bonding interactions link the molecules into centrosymmetric dimers.

Related literature

For general background see: Kirin et al. (2005); Storr et al. (2005); Tamamura et al. (2006); Lee et al. (2007) & Ojida et al. (2004). For related literature, see: Addison et al. (1984).

Experimental

Crystal data $[ZnCl_2(C_{12}H_{13}N_3)] \cdot CHCl_3$ $M_r = 454.89$ Monoclinic, $P2_1/n$ a = 6.9650 (6) Å b = 12.8654 (12) Å c = 20.9341 (18) Å $\beta = 90.335 \ (5)^{\circ}$

V = 1875.8 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 2.02 \text{ mm}^{-1}$ T = 295 (2) K $0.20 \times 0.18 \times 0.17 \text{ mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.661, \ T_{\max} = 0.697$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of
$wR(F^2) = 0.132$	independent and constrained
S = 1.03	refinement
4676 reflections	$\Delta \rho_{\rm max} = 0.85 \ {\rm e} \ {\rm \AA}^{-3}$
203 parameters	$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$

36984 measured reflections

 $R_{\rm int} = 0.055$

4676 independent reflections 3104 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Zn-N1	2.159 (3)	Zn-Cl1	2.2919 (10)
Zn-N8	2.136 (3)	Zn-Cl2	2.2722 (9)
Zn-N15	2.170 (3)		
N1-Zn-N8	77.23 (12)	N8-Zn-Cl1	104.71 (9)
N1-Zn-N15	151.65 (12)	N8-Zn-Cl2	138.97 (9)
N1-Zn-Cl1	98.01 (9)	N15-Zn-Cl1	97.87 (9)
N1-Zn-Cl2	97.20 (9)	N15-Zn-Cl2	96.59 (8)
N8-Zn-N15	76.11 (12)	Cl1-Zn-Cl2	116.30 (4)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N8-H8\cdots Cl2^i$	0.85 (4)	2.63 (4)	3.365 (3)	146 (3)

Symmetry code: (i) -x + 1, -y + 2, -z.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by a Korean Research Foundation grant (grant No. KRF-2006-521-C00083) funded by the Korean Government (MOEHRD). The X-ray data were collected at the Center for Research Facilities at Chungnam National University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2200).

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

- Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02) and SMART (Version 5.62). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kirin, S. I., Dübon, P., Weyhermüller, T., Bill, E. & Metgler-Nolte, N. (2005). Inorg. Chem. 44, 5405-5415.
- Lee, H.-W., Seo, H.-J., Kim, H.-J., Kang, S. K., Heo, J. Y. & Kim, Y.-I. (2007). Bull. Korean Chem. Soc. 28, 855-858.

Ojida, A., Miti-oka, Y., Sada, K. & Hamachi, I. (2004). J. Am. Chem. Soc. 126, 2454-2463.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Storr, T., Sugai, Y., Borta, C. A., Mikata, Y., Adam, M. J., Yano, S. & Orvig, C. (2005). *Inorg. Chem.* 44, 2698–2705.
- Tamamura, H., Ojida, A., Ogawa, T., Tsutsumi, H., Masuno, H., Nakashima, H., Yamamoto, N., Hamachi, I. & Fujii, N. (2006). J. Med. Chem. 49, 3412– 3415.

supplementary materials

Acta Cryst. (2007). E63, m2810-m2811 [doi:10.1107/S1600536807051422]

[Bis(2-pyridylmethyl)amine]dichloridozinc(II) chloroform solvate

Y.-I. Kim, Y.-S. Lee, H.-J. Seo, J.-Y. Lee and S. K. Kang

Comment

Transition metal complexes with di(2-picolyl)amine (dpa) or substituted-dpa ligands continue to be of interest in many fields in chemistry (Kirin *et al.*, 2005; Storr *et al.*, 2005; Tamamura *et al.*, 2006 & Lee *et al.*, 2007). Among them, Zn(II) complexes exhibit fluorescence and can be applied as fluorescent chemosensors (Ojida *et al.*, 2004). The Zn(II) center in the title [Zn(dpa)Cl₂] complex, characterized as a monochloroform solvate, (I), is five-coordinated by the three N atoms of the dpa ligand and two Cl atoms (Fig. 1 & Table 1). The coordination pattern of the three N atoms of the dpa ligand is meridional and forms a planar ZnN₃ arrangement and the overall coordination geometry is based on a square pyramid. The calculated trigonality index, τ , for Zn(dpa)Cl₂ in (I), of 0.21, is consistent with this conclusion ($\tau = 0$ for a square pyramid and $\tau = 1$ for a trigonal bipyramid (Addison *et al.*, 1984)). Hydrogen bonding interactions of the type N—H···Cl link molecules into centrosymmetric dimeric aggregates (Table 2). Upon excitation at 400 nm, complex (I) exhibits an intense blue emission at 426 nm in DMF solution.

Experimental

All reagents and solvents were purchased from Aldrich and used without further purification. A mixture of $ZnCl_2$ (0.66 g, 5 mmol) and di(2-picolyl)amine (0.99 g, 5 mmol) in ethanol (20 ml) was stirred at room temperature under an nitrogen atmosphere. The precipitates were filtered off and recrystallized from chloroform to yield (I). ¹H NMR for dpa in (I) (d₆-DMSO, p.p.m.): δ : 8.76 (d, 2H), 8.00 (m, 2H), 7.55 (t, 4H), 4.90 (t, 1H), 4.13 (s, 4H).

Refinement

The N8—H atom was refined without constraint. The C-bound H atoms were included in the riding model approximation with C—H = 0.93–0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids.

(I)

Crystal data [ZnCl₂(C₁₂H₁₃N₃)]·CHCl₃ $M_r = 454.89$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.9650 (6) Å b = 12.8654 (12) Å c = 20.9341 (18) Å $\beta = 90.335$ (5)° V = 1875.8 (3) Å³ Z = 4

 $F_{000} = 912$ $D_x = 1.611 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5802 reflections $\theta = 2.5-23.5^{\circ}$ $\mu = 2.02 \text{ mm}^{-1}$ T = 295 (2) KBlock, colourless $0.20 \times 0.18 \times 0.17 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	$R_{\rm int} = 0.055$
ϕ and ω scans	$\theta_{max} = 28.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)	$\theta_{\min} = 1.9^{\circ}$
$T_{\min} = 0.661, \ T_{\max} = 0.697$	$h = -9 \rightarrow 9$
36984 measured reflections	$k = -17 \rightarrow 17$
4676 independent reflections	$l = -27 \rightarrow 27$
3104 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0612P)^2 + 1.569P]$
•	where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.046$	$(\Delta/\sigma)_{\rm max} < 0.001$
$wR(F^2) = 0.132$	$\Delta \rho_{max} = 0.85 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.03	$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$
4676 reflections	Extinction correction: none
203 parameters	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn	0.58918 (5)	0.97733 (3)	0.110162 (18)	0.04221 (14)
C11	0.69504 (13)	0.90035 (8)	0.20260 (4)	0.0528 (2)
C12	0.80351 (14)	1.08035 (8)	0.05874 (4)	0.0566 (3)
N1	0.4222 (4)	1.1003 (3)	0.15276 (15)	0.0514 (7)
C2	0.4828 (7)	1.1957 (4)	0.1677 (2)	0.0665 (11)
H2	0.6083	1.2144	0.1581	0.08*
C3	0.3661 (8)	1.2674 (4)	0.1968 (2)	0.0819 (15)
H3	0.4118	1.3332	0.207	0.098*
C4	0.1807 (8)	1.2396 (5)	0.2105 (2)	0.0817 (15)
H4	0.0986	1.2869	0.2299	0.098*
C5	0.1169 (6)	1.1420 (4)	0.1956 (2)	0.0722 (13)
Н5	-0.0084	1.1222	0.2047	0.087*
C6	0.2417 (5)	1.0731 (3)	0.16676 (16)	0.0521 (9)
C7	0.1865 (5)	0.9624 (3)	0.1518 (2)	0.0577 (10)
H7A	0.2079	0.9192	0.1892	0.069*
H7B	0.0512	0.9592	0.1408	0.069*
N8	0.3013 (4)	0.9232 (3)	0.09836 (15)	0.0462 (7)
H8	0.252 (5)	0.947 (3)	0.0644 (19)	0.045 (11)*
С9	0.3055 (6)	0.8096 (3)	0.0925 (2)	0.0553 (10)
H9A	0.185	0.7851	0.0745	0.066*
H9B	0.3218	0.7785	0.1344	0.066*
C10	0.4691 (6)	0.7776 (3)	0.04990 (17)	0.0517 (9)
C11	0.4684 (8)	0.6857 (3)	0.0160 (2)	0.0721 (13)
H11	0.3635	0.6411	0.0176	0.087*
C12	0.6275 (9)	0.6612 (4)	-0.0206 (2)	0.0844 (15)
H12	0.6321	0.599	-0.0431	0.101*
C13	0.7771 (8)	0.7294 (4)	-0.0231 (2)	0.0775 (14)
H13	0.884	0.7148	-0.048	0.093*
C14	0.7680 (6)	0.8190 (4)	0.01125 (19)	0.0597 (10)
H14	0.8708	0.865	0.0094	0.072*
N15	0.6173 (4)	0.8437 (2)	0.04767 (14)	0.0482 (7)
C16	0.9172 (9)	0.5298 (4)	0.1609 (2)	0.0859 (16)
H16	0.8947	0.4975	0.2026	0.103*
C13	1.1706 (3)	0.53673 (14)	0.14969 (12)	0.1342 (7)
Cl4	0.8241 (3)	0.65527 (13)	0.16368 (8)	0.1098 (5)
C15	0.8131 (5)	0.4523 (2)	0.10431 (13)	0.1840 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.0364 (2)	0.0507 (2)	0.0396 (2)	-0.00151 (17)	0.00611 (15)	-0.00004 (18)
Cl1	0.0524 (5)	0.0634 (6)	0.0426 (5)	0.0039 (4)	0.0040 (4)	0.0078 (4)
Cl2	0.0553 (5)	0.0690 (6)	0.0458 (5)	-0.0137 (5)	0.0094 (4)	0.0064 (4)
N1	0.0486 (17)	0.057 (2)	0.0483 (17)	0.0100 (14)	0.0022 (13)	0.0002 (15)

supplementary materials

C2	0.071 (3)	0.063 (3)	0.066 (3)	0.008 (2)	0.001 (2)	-0.010 (2)
C3	0.104 (4)	0.068 (3)	0.074 (3)	0.025 (3)	-0.009 (3)	-0.023 (3)
C4	0.086 (4)	0.098 (4)	0.062 (3)	0.043 (3)	-0.002 (2)	-0.022 (3)
C5	0.055 (2)	0.106 (4)	0.056 (3)	0.025 (3)	0.0048 (19)	-0.009(3)
C6	0.045 (2)	0.074 (3)	0.0372 (18)	0.0155 (18)	0.0046 (15)	0.0008 (18)
C7	0.0410 (19)	0.074 (3)	0.058 (2)	0.0064 (18)	0.0086 (17)	0.008 (2)
N8	0.0393 (15)	0.058 (2)	0.0408 (16)	-0.0017 (14)	0.0009 (13)	0.0050 (15)
C9	0.053 (2)	0.055 (2)	0.059 (2)	-0.0118 (18)	0.0001 (18)	0.0050 (18)
C10	0.059 (2)	0.053 (2)	0.043 (2)	-0.0036 (18)	-0.0042 (16)	0.0019 (17)
C11	0.097 (4)	0.055 (3)	0.064 (3)	-0.005 (2)	-0.008 (3)	-0.009(2)
C12	0.117 (5)	0.069 (3)	0.067 (3)	0.011 (3)	-0.001 (3)	-0.023 (3)
C13	0.089 (3)	0.082 (3)	0.061 (3)	0.016 (3)	0.013 (2)	-0.014 (3)
C14	0.059 (2)	0.070 (3)	0.050 (2)	0.010(2)	0.0101 (18)	-0.003 (2)
N15	0.0487 (17)	0.0533 (18)	0.0426 (16)	-0.0011 (14)	0.0044 (13)	-0.0029 (14)
C16	0.128 (5)	0.071 (3)	0.059 (3)	0.006 (3)	0.009 (3)	-0.001 (2)
C13	0.1399 (17)	0.0955 (12)	0.168 (2)	0.0094 (11)	0.0342 (14)	0.0047 (12)
Cl4	0.1519 (15)	0.0851 (10)	0.0925 (10)	0.0336 (10)	0.0029 (10)	0.0020 (8)
C15	0.245 (3)	0.141 (2)	0.165 (2)	0.0070 (19)	-0.077 (2)	-0.0631 (17)

Geometric parameters (Å, °)

Zn—N1	2.159 (3)	С7—Н7В	0.97
Zn—N8	2.136 (3)	N8—H8	0.85 (4)
Zn—N15	2.170 (3)	C9—C10	1.508 (5)
Zn—Cl1	2.2919 (10)	С9—Н9А	0.97
Zn—Cl2	2.2722 (9)	С9—Н9В	0.97
N1—C2	1.335 (5)	C10—N15	1.338 (5)
N1—C6	1.339 (5)	C10—C11	1.380 (6)
C2—C3	1.374 (6)	C11—C12	1.386 (7)
С2—Н2	0.93	C11—H11	0.93
C3—C4	1.372 (8)	C12—C13	1.364 (7)
С3—Н3	0.93	C12—H12	0.93
C4—C5	1.367 (7)	C13—C14	1.360 (6)
C4—H4	0.93	С13—Н13	0.93
C5—C6	1.382 (6)	C14—N15	1.340 (5)
С5—Н5	0.93	C14—H14	0.93
C6—C7	1.507 (6)	C16—C15	1.706 (6)
N8—C9	1.467 (5)	C16—Cl4	1.741 (5)
C7—N8	1.468 (5)	C16—Cl3	1.784 (7)
С7—Н7А	0.97	C16—H16	0.98
N1—Zn—N8	77.23 (12)	C9—N8—Zn	108.4 (2)
N1—Zn—N15	151.65 (12)	C7—N8—Zn	108.3 (2)
N1—Zn—Cl1	98.01 (9)	C9—N8—H8	108 (3)
N1—Zn—Cl2	97.20 (9)	C7—N8—H8	107 (3)
N8—Zn—N15	76.11 (12)	Zn—N8—H8	111 (3)
N8—Zn—Cl1	104.71 (9)	N8—C9—C10	109.7 (3)
N8—Zn—Cl2	138.97 (9)	N8—C9—H9A	109.7
N15—Zn—Cl1	97.87 (9)	С10—С9—Н9А	109.7
N15—Zn—Cl2	96.59 (8)	N8—C9—H9B	109.7

Cl1—Zn—Cl2	116.30 (4)	С10—С9—Н9В	109.7
C2—N1—C6	119.0 (4)	Н9А—С9—Н9В	108.2
C2—N1—Zn	126.9 (3)	N15-C10-C11	121.8 (4)
C6—N1—Zn	114.1 (3)	N15-C10-C9	115.7 (3)
N1—C2—C3	122.3 (5)	C11—C10—C9	122.5 (4)
N1—C2—H2	118.9	C10-C11-C12	118.6 (5)
С3—С2—Н2	118.9	C10-C11-H11	120.7
C4—C3—C2	118.6 (5)	C12—C11—H11	120.7
С4—С3—Н3	120.7	C13—C12—C11	119.3 (5)
С2—С3—Н3	120.7	C13—C12—H12	120.3
C5—C4—C3	119.8 (4)	C11—C12—H12	120.3
С5—С4—Н4	120.1	C14—C13—C12	119.1 (5)
С3—С4—Н4	120.1	C14—C13—H13	120.5
C4—C5—C6	119.0 (5)	C12-C13-H13	120.5
С4—С5—Н5	120.5	N15-C14-C13	122.8 (4)
С6—С5—Н5	120.5	N15-C14-H14	118.6
N1—C6—C5	121.4 (4)	C13—C14—H14	118.6
N1—C6—C7	116.1 (3)	C10-N15-C14	118.4 (3)
C5—C6—C7	122.4 (4)	C10—N15—Zn	114.2 (2)
N8—C7—C6	110.1 (3)	C14—N15—Zn	127.2 (3)
N8—C7—H7A	109.6	Cl5—C16—Cl4	114.1 (4)
С6—С7—Н7А	109.6	Cl5—C16—Cl3	110.8 (3)
N8—C7—H7B	109.6	Cl4—C16—Cl3	109.1 (3)
С6—С7—Н7В	109.6	Cl5—C16—H16	107.5
H7A—C7—H7B	108.2	Cl4—C16—H16	107.5
C9—N8—C7	114.7 (3)	Cl3—C16—H16	107.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N8—H8···Cl2 ⁱ	0.85 (4)	2.63 (4)	3.365 (3)	146 (3)
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$.				

